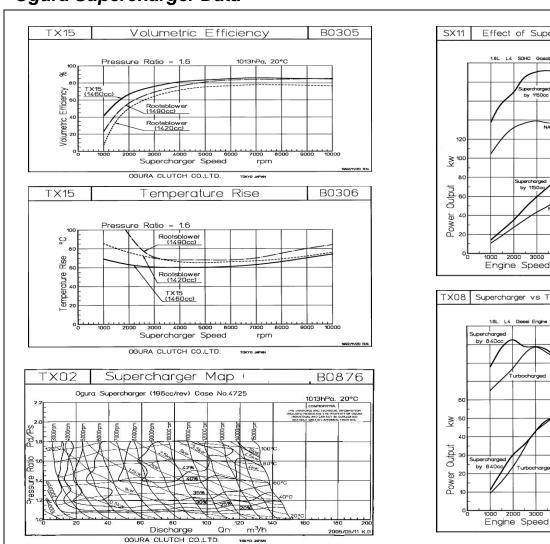
SUPER CHARGER

Ogura High Efficiency Superchargers:


New Applications include: Marine, Fuel Cells, Emissions controls

Features:

- •**High Efficiency:** Far more efficient than ordinary roots blowers because of the larger seal area.
- Excellent Durability: Superb durability due to Teflon coated Rotors.
- •Better Efficiency: Reduced inertia means less resistance, lower drag torque.
- Effective Particle Control: Effectively handle particles emitted from a diesel engine.
- •Easily customized: For smaller size applications/fuels.
- •Reduced Noise level: Due to Wankel Rotary design.

Ogura Supercharger Data

SX11	Effect	of S	Superd	charg	er	B0303	3
_	1.8L L4	SOHO	9asoline	Engine		— 200	
		/	<u> </u>				
		Superci	harged 150cc			180 5	۱
						160	١
\vdash	-		NA			140 월	
120	+	1-				120 🖰	
≥ 100	/		ļ			100	
× 80							
		Supercho by 115	arged 50cc			1	
Power Outpu		/	NA NA				
± 40 −		//	1-			\dashv	1
≥ ⊦	/	1 /	1			1	1
20						-	
⁸ 20 −			000 40	000 50	000	6000	
ŀ	1000 2 Engin			000 50 rpi		6000 1882/11/27 RA	
	Engin	e Spe	eed	rpi	m	1992/11/27 R.S	_
		e Spe	eed	rpi	m	1992/11/27 R.S	_
	Engin Supercho	e Spe	eed s Turi	rpi	m	1992/11/27 R.S	_
X08	Engin	e Spe	eed s Turi	rpi	m	80304	_
X08	Engin Supercho	e Spe	eed s Turi	rpi	m	B0304	_
X08	Engin Supercho	e Speringer v	s Turk	rpi	m	160 E 140 Z	_
X08	Engin Supercho	e Spe	s Turk	rpi	m	B0304	_
X08	Engin Supercho	e Speringer v	s Turk	rpi	m	160 E 140 Z	_
x08	Engin Supercho	e Speringer v	s Turk	rpi	m	160 E 140 Z	_

2000 3000 5000

rpm

Specification	Unit	TX04	TX07	TX10	TX12	TX15	TX20
Theoretical discharge	cc/rev	410	730	960	1160	1460	2060
Maximum r.p.m. (continuous)	rpm	12,000	12,000	11,000	11,000	10,000	9,000
Maximum r.p.m.(instantaneous)	rpm	15,000	15,000	14,000	14,000	13,000	13,000
Maximum pressure ratio (continuous)		1.8	1.8	1.8	1.8	1.8	1.8
Maximum pressure ratio (instantaneous)		2	2	2	2	2	2
Maximum discharge at maximum r.p.m.(at pressure ratio 1.8)	m3 /h	235	415	500	605	675	920
Weight	kg	5.3	6.6	7.8	8.4	10	15

Please submit your application specifications to:

In North America: Fred Cacace, Supercharger Product Manager Ogura Industrial Corp. 100 Randolph Road, Somerset NJ 08873 1-732-271-7362, FAX: 732-271-7580

e-mail: fcacace@ogura-clutch.com